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Figure 1

The photograph in figure 1 displays a water cooled round convergent-divergent
supersonic nozzie operating slightly overexpanded near 2460°F. The nozzie is
designed to produce shock free flow near this temperature at Mach 2. The exit
diameter of this nozzle is 3.5 inches. This nozzle is used in the present study to
establish properties of the sound field associated with high temperature supersonic
jets operating fully pressure balanced (i.e. shock free) and to evaluate capability of
the compressible Rayleigh model to account for principle physical features of the
observed sound emission. The experiment is conducted statically (i.e. M, = 0.) in
the NASA/LaRC Jet Noise Laboratory. Both aerodynamic and acoustic
measurements are obtained in this study along with numerical plume simulation
and theoretical prediction of jet noise. Detailed results from this study are reported
previously by Seiner, Ponton, Jansen, and Lagen (1992).
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TAM AND OERTEL’S CONVECTIVE MACH
NUMBER RELATIONS

l. Supersonic instability waves

Mc= V°ICA= (Vl-Vc)/C, = Vl/(Cl-l- CA)

Il. Kelvin-Helmholtz instability waves (eddy Mach wave emission)

M. =V / Cy= (V- Vo) / € + 1= (V, + C) /(Cy+ Cp)

Iil. Subsonic instability waves

Mg = Vg / Cp= (V- V") / C - 1= (V, - C) / (C;+ C,)

Figure 2

In the early 1980’s, Oertel (1982) observed the existence of three distinct families of waves in the
shear layer of an unheated high Mach number supersonic jet generated by a shock tube. Using
time resolved photographic renditions, Oertel distinguished one family of waves from another by
observation of their different convection velocities. He noted that the first family of waves were
convected supersonically relative the sum of the local jet and ambient sound speed. The second
family was convected supersonically relative to the ambient sound speed. The third family was
convected subsonically; its speed governed by the difference between the local jet and sound
speeds. For hot jets, however, even this wave could eventually convect supersonically at extreme
Mach and jet total temperatures. Oertel developed simple convective Mach number relations for
these families of waves, as shown in figure 2. Here,V, V,, ¢, c,, represent the convection, local
jet velocity, local jet sound speed, and ambient sound speed.

More recently in a benchmark paper, Tam (1989) demonstrated that Oertel’s convective Mach
number relations actually satisfied those obtained from solution of the compressible Rayleigh
equation. The second family of waves were found to be associated with the familiar Kelvin-
Helmholtz instability waves. The first family of waves were obtained by extension of the Rayleigh
model to include radial modes. Both the first and second families of waves are expected to be
important sources of noise emission because of their supersonic phase speed. The third family of
waves are technically unimportant because of their subsonic phase speed in the range of both
Mach and jet total temperatures typically encountered in aircraft jet engines being considered for
the NASA HSR program.
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DEFINITION OF MACH WAVE ANGLE

Figure 3

Figure 3 illustrates the convention used to define the Mach wave angle is shown in
the figure. Here, V., is the convection velocity of turbulence in the jet shear layer
and, c,, is the ambient sound speed. The acoustic wavefront is propagated, as
shown, at an angle, 8, to the turbulent shear layer.
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By way of illustration, consider the spark schlieren photograph of figure 4. This
photographic record was obtained using My = 2 water cooled nozzle. The nozzle
was operated overexpanded (i.e. M; = 1.8) at 1370°K. This record, taken with a
vertical knife edge and spark duration < 0.1 y-sec., captures a nearly
instantaneous view of both the flow and near acoustic field. The acoustic waves
that emanate from along the edge of the jet shear layer are produced by turbulence
convecting supersonically. For this Mach number and jet total temperature, one
expects that both the first and second families of waves will have supersonic
phase speeds based on the convective Mach number relations in figure 3.

The schlieren record shows the presence of at least three types of acoustic waves.
The first set are waves with very short wavelength , located near the nozzie exit.
A second set of low amplitude waves, with a wavelength of at least an order of
magnitude greater than those centered at the nozzle exit, appear to be propagating
at low angles to the jet shear layer. The 24° vector indicates a best guess
estimate of their direction. The third set of waves have even longer wavelengths
and are of significantly greater amplitude. These waves appear to be inclined at
64° to the jet axis as indicated on the figure. The axial wavelength appears to
increase with increasing downstream distance.
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MACH WAVE EMISSION ANGLE

MACH ANGILE: 8

COS*"(1/M.)=COS*"(C,/ aV,)

6. = 28° - SUPERSONIC INSTABILITY WAVE

6. = 24° - SCHLIEREN RECORD

8. = 56° - KELVIN-HELMHOLTZ INSTABILITY
6. = 64° - SCHLIEREN RECORD

Figure 5

Mach waves are emitted from the supersonic shear layer at an angle, 8, that depends on the
convection speed of turbulence in the jet shear layer. This is illustrated graphically in figure 3 and
can be computed as shown in figure 5 as the inverse cosine of , 1/M,, the convection Mach
number. As we have seen from figure 2, the convection Mach number for each wave family can
be determined from Oertel’s relationships or computed from the phase speed based on solution of
the compressible Rayleigh equation. In figure 5, a, represents a compilation of those terms
necessary to compute the convection velocity, V., using these relationships for each family of
wave. It is important to note, however, that turbulence is a dispersive medium. Thus the
convection velocity is dependent on the turbulence frequency and axial location away from the jet
axis, and consequently @ = a{x,w). For purposes of illustration with the spark schlieren of figure 4,
the jet exhaust velocity and temperature are used to calculate a value for a. This can only be
expected to provide a nominal value for the convection Mach number and Mach emission angle.

As shown in figure 5, the nominal value for the Mach emission angles for the first two families of
instability waves is reasonably close to that displayed in the figure 4 schlieren. Later it will be
shown that instability wave analysis also predicts that supersonic instability waves dominate high
frequency Mach wave emission and originate closer to the jet axis than do the Kelvin-Helmhoitz
instability waves.
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FAR FIELD ACOUSTIC DATA CORRECTED TO 3.66 METER ARC
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Figure 6

In figure 6, the overall sound pressure level {(OASPL) in dB is shown for several jet total
temperatures investigated using the My = 2 round nozzle. All results shown are for operation of
the nozzle fully pressure balanced. The data is presented in terms of the angle to the nozzle inlet
axis. The OASPL is computed from each microphone’s digitized time record. The nozzle thrust is
nearly constant for all temperature conditions. The relatively rapid rise in the OASPL from low
temperatures to smaller increases at high temperature is expected, since the convective Mach
number depends on the absolute jet temperature ratio T,-/T ar Where Ti' and T, are respectively the
jet total and ambient temperatures.

For each temperature there is a well defined peak amplitude region. The Mach wave emission
process is confined to angles greater than ¢ = 90°. At 313°K the peak OASPL lies near Y, =
145°. The angle, ¥,, that defines other peak angles of emission, decreases with increasing jet
temperature as expected form the convective Mach number relations of figure 2. At 1370°K, these
convective Mach number relations predict that the supersonic instability waves would have the
peak amplitude of emission occur at an angle of ¢ = 143° and the K-H instability waves an angle
of ¢ = 122° The 1370°K data of figure 6 show a major peak in OASPL near ¥, = 129%and a
minor peak near ¥, = 137°. Thus reasonable agreement exist between the observed peak
amplitude emission angles and those calculated nominal values.
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NARROW BAND FAR FIELD ACOUSTIC SPECTRA
(M; = 2.002, T, = 1370°K)
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Figure 7

Several narrow band spectra at inlet angles of ¢ = 88.9°, 128.9°, and 160.1° are
shown in figure 7 for the T; = 1370°K jet temperature condition. These spectra
have been corrected to spectrum levels and only the first 25 kHz. of the 100 kHz.
processed spectrum is shown to enhance details at low frequency.

The 88.6° spectrum lies outside the Mach wave emission field and is very flat
without a well defined frequency of peak amplitude. The spectrum at the 128.9°
shows a large increase in low frequency content with a well defined peak spectral
value near 1.5 kHz. The spectrum at 160.1°, which lies well beyond the peak
OASPL emission direction, indicates an even greater increase in low frequency
emission with a very narrow band spectral peak. Very little high frequency noise is
emitted in this direction, relative to the other two angles in figure 7.

27-7



DISTRIBUTION OF SPECTRUM PEAK
AMPLITUDE LEVELS
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Figure 8

The angular distribution of spectral peak amplitude levels are shown in figure 8 for
the jet total temperature of T, = 1370°K. This data is generated from narrow band
spectra like those of figure 7. The data of figure 8 indicates that the angular
location, where the Mach wave emission process becomes important, lies between
@ = 100° and 110°. After reaching a peak value at ¢ = 134°, the peak amplitude
spectral values remain relatively constant with increasing angular position.
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STROUHAL FREQUENCY TREND WITH
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Figure 9

For the same jet operating, figure 8 shows the angular dependence of the
frequency identifying the peak spectral amplitude. The data is presented in terms
of the Strouhal frequency, S,, where S, = fD/V;. The Strouhal frequency is seen to
decrease from values near 0.35 at ¢ = 90° to values near 0.03 at ¢ = 160°. The
scatter in Strouhal frequencies at lower angles of y is due to limitation in
identification of a spectrum peak amplitude from a flat spectrum, like that shown in
the figure 7 spectrum for y, = 88.56°. The angular dependence of the Strouhal
frequency and spectral peak amplitude are important characteristics of the Mach
wave emission process.
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SCALED HIGH TEMPERATURE JET DATA
(FULLY EXPANDED MACH 2 JET)
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Figure 10

The results of the high temperature study of jet noise associated with the round fully pressure
balanced Mach 2 nozzle, provides valuable insight of the scaled noise field for HSR applications.
Figure 10 shows computed values of EPNL for several jet total temperatures, ranging from ambient
to 1534°K. The EPNL values are shown relative to the near ambient jet total temperature of
313°K. The data is corrected to 50000 Ibs. of thrust at a sideline distance of 1476 feet. Forward
flight is simulated for M; = 0.2 to enable the EPNL calculation. Jet noise is corrected for forward
flight using standard modules found in the NASA ANOPP code (Zorumski 1982).

The EPNL metric is found to remain relatively constant, near 6 PNdB greater than the reference
temperature of 313°K, for temperature ratio’s greater than 2.5 (i.e. T, = 755°%). The principle
reason why the EPNL metric asymptotes with temperature is related to the generation of significant
high frequency jet noise that is not weighted into the metric. Typical HSR jet total temperatures
are expected to be near 1140°K for a 700 Ibm./sec. engine at take-off power. In the HSR program,
a mixer/ejector achieving fully mixed flow at the ejector exit with 100% pumping would have an
exhaust temperature near 755°K.

From the data in figure 10, it is clear that at this temperature the same amount of noise would
have to be removed as at the higher temperatures. The current reason, however, why the industry
seeks lower temperatures solely rests in the observation that jet noise suppressors have thus far
worked much more effectively at lower velocities (i.e. lower jet total temperatures). The pay-off is
big, however, if a satisfactory scheme could be devised to achieve suppression at higher jet total
temperatures. At high jet temperatures, the engine weight flow is significantly lowered to achieve
the same thrust thus reducing engine size and weight. Higher jet engine temperatures also lead to
more efficient engine cycles.
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AXIAL DEVELOPMENT OF A SUPERSONIC JET
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Figure 11

All free jets are divided into three main regions of flow development, as shown in
figure 11. The near field region of jet development is known as the core region. In
this region the initial shear grows nearly linearly with the slowest growth rate of all
regions. For well designed nozzles, a nearly turbulent free region exists bounded
by the inner side of the shear layer. The core region extends several jet exit
diameters downstream, the axial extent being primarily a function of jet exit and
free stream Mach number. For a static Mach 2 nozzle, this distance is
approximately 10 diameters. In the fully developed region of jet, the flow develops
in a self preserving state where mean flow variables vary like r/x. In this region the
jet spreads at a greater rate than in the core region. The transition region is one
where the flow adjusts between the core and fully developed region. In this region
large changes occur in the turbulent structure; the Reynolds stress tensor peaks in
this region. It is the rapid change in turbulent structure in this region that is the
cause for the generation of the most intense noise.
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JET MEAN FLOW FIELD PARAMETERS

Half-Gaussian profile parameters

h  -radius of potential core

R  -radial coordinate

Rs -radius to half jet velocity

V - axial velocity

VcL - axial centerline velocity

V; -ftully expanded jet exit velocity

V/Vg =1 R<h
V/Vo =EXP(-(In2)n®) Rz2h
n=(R-h)/b

b:R.s'h

Crocco’s relation
P/ p=(14.5(y- M) (Ta/ To + (1-Ta/ T)V/V))

- -5(7 - 1)sz (V / VI)2

Figure 12

Analysis of the noise radiated by a supersonic jet requires information concerning development of
the flow in all three regions of jet flow development, although the core and transition are of most
importance. Application of the compressible Rayleigh model to predict noise only requires
information concerning the mean flow, whereas application of Lighthill’s or Lilley’s equation
requires considerable information concerning the second derivative of a two point space-time
turbulent Reynolds stress tensor. This paper is concerned with evaluation of the former model
because of its relative simplicity and prior accuracy in prediction of important aerodynamic and
acoustic physical features with low temperature supersonic jets.

The usual approach is to use a half-Gaussian profile to represent the axial mean velocity profile.
This means that the Rayleigh analysis assumes that jets spread relatively slowly since the radial
mean velocity is neglected relative to the axial component. This appears a satisfactory assumption
for simple laboratory jets. Figure 12 shows that to establish the half-Gaussian profile in all regions
of jet flow development would only require knowledge of the potential core radius, h, the radius to
half jet velocity, R 5, and the axial mean centerline velocity, V,. The jet density is then determined
from jet exit operating conditions and Crocco’s relation, which holds identically for isothermal jets.
For the present Mach 2 jet, the flow is isothermal near a jet total temperature of 500°K.
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CENTERLINE VELOCITY DECAY
WITH JET TEMPERATURE
Fully Pressure Balanced Mach 2 Jet into Still Air
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Figure 13

The experimentally determined jet centerline velocity, V,, is shown in figure 13 for
several jet total temperatures ranging from 313 to 1370°K. The centerline velocity
data is normalized by the jet exit velocity, which is computed from the operating
pressure and temperature stagnation conditions in the nozzle plenum. The axial
distance is normalized by the jet exit radius. For this data, the jet nozzle is
operated fully pressure balanced and into still air.

Except for the influence of weak shocks in the jet plume, the centerline velocity for
all jet total temperatures remains uniform over the first 16 jet radii from the nozzle
exit. Beyond this region, the difference in velocity for the various jet temperatures
increases substantially with axial distance. Examination of this data shows that
the jet potential core length, L. , generally decreases with increasing jet
temperature.
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Instability Wave Model - Mean Flow Profiles
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Figure 14

Figure 14 displays typical appearance of the mean velocity profiles obtained using
the half-Gaussian profile for flow in the core (left side figure) and transition and
fully developed regions (right side figure). Note the radius of the potential core, h

= 0, beyond the core region.
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TEMPERATURE DEPENDENCE ON-MEASURED
JET SPREAD RATE PARAMETERS
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Figure 15

Figure 15 shows the measured axial variation of the radius to half velocity, R g, and
velocity half width of the mixing layer, b, as defined in figures 12 and 14, for the
three jet total temperatures of 313, 755, and 1114°K. These parameters are
normalized by the nozzle exit radius. The axial development of these spread rate
parameters indicates that the shear layer growth of the inner boundary toward the
jet centerline is much greater for hot jets than cold jets. The outer radial boundary
of the shear layer is observed to grow at a slower rate for hot jets than cold jets.
The overall net result is that the potential core of hot jets is slightly reduced
compared to cold jets. Figure 15 also indicates that the most significant
difference in spread rate occurs between jets operating below and above
isothermal jet temperatures.
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RADIAL MEAN VELOCITY PROFILES
(0.1 <X/p < 15.0)
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Figure 16

The universal half-Gaussian shape of the measured mean velocity profiles are
shown in figure 16 for the three jet temperatures considered above. The data
represents a compilation of all measured velocity profiles from the nozzle exit to 30
Rj. The data in the figure is plotted, for clarity, using lines connecting the data
points. The collapse of the data points is quite good, providing a satisfactory data
base for application of the Rayleigh model.
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MEASURED CONVECTION MACH NUMBERS

25

313K - K-H waves
500K 755K — Supersonic waves

(x/Rj)

Figure 17

The Mach wave mechanism can produce noise only in those regions where a
turbulent structure’s phase velocity is supersonic. The phase velocities for the
supersonic and Kelvin-Helmholtz instabilities are given in figure 2 in terms of their
convection Mach numbers. These equations are used along with the measured
properties to compute the convection Mach number for both families of instability
waves. Figure 17 presents results of this analysis for all 5 jet total temperatures
investigated. When either M_ or Mc' fall below unity, noise emission by the Mach
wave process is terminated.

The data in figure 17 show that supersonic phase velocities for supersonic
instability waves do not extend far beyond the end of the potential core. On the
other hand, the phase velocity for the Kelvin-Helmholtz (K-H) instabilities are
supersonic well beyond the end of the potential core. The axial extent of the noise
producing region for this second family of waves is thus quite extensive. The K-H
waves have supersonic phase speed to near X/R; = 46, independent of the jet
total temperature. Thus the axial region for noise emission by the Mach wave
emission mechanism does not appear to increase with jet total temperature.
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PREDICTED JET CENTERLINE VELOCITIES
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Figure 18

In figure 18, comparison is made between the SAIC TTJET code prediction of
Dash and Kenzakowski (1992) for centerline velocity and the measured data for jet
total temperatures of 755°K and 1370°K. The TTJET code is a parabolized
Navier-Stokes solver with up-wind differencing. and Pope (1978) centerline
corrections for vortex stretching. It utilizes a two equation turbulence model with
compressibility corrections based on the work of Sarkar, Erlebacher, Hussani, and
Kreiss (1989). The predicted potential core length is slightly greater than
measured values. When T, = 755° the measured and predicted values for L_ are
respectively 18.25 R; and 20.51 R, When T, = 1370°K the respective measured
and predicted values are 18.83 R; and 20.85 R;.

Beyond the potential core, deviations between the predicted and measured values
become more apparent. The predicted jet centerline velocities decay much faster
than do measured data. The measured data indicates that differences in centerline
velocity decay with temperature are greater than those predicted. The observed
differences between measured and predicted centerline data suggest that the
TTJET code predicts much greater mixing in this downstream region. This
behavior could be attributed to performance of the compressible turbulence
dissipation model installed in the code.
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MEASURED AND PREDICTED JET SPREAD PARAMETERS
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Figure 19

In figure 19, a comparison is made between the measured and TTJET code predictions for R .
These appear to be in outstanding agreement with measured values. However, the specification of
a 10% initial boundary layer thickness in the code calculations overestimates the real nozzle exit
boundary layer thickness. Thus the numerical jet appears to have a thicker shear layer thickness to
X/R; = 15. Beyond this point, the TTJET code predicts substantially greater mixing than observed
experimentally.

It is well known from previous experimental studies that beyond the potential core region the
turbulence structure must respond to a rapid transition of the mean flow from annular to
axisymmetric shape. The large scale turbulence structure generally transitions from helical to
axisymmetric spatial structure. The ke-CD turbulence model does not contain the methodology to
accommodate these flow field characteristics. The quantitative difference between the predicted
and measured jet spread rate parameters is expected to play an important role in application of the
compressible Rayleigh equation. The major noise producing region occurs near the end of the
potential core, where the most highly amplified instability wave reaches its maximum growth. This
growth is strongly dependent upon representation of the mean flow field. The accelerated rapid
mixing of the numerical predictions near the end of the potential core would produce, based on
application of the Rayleigh model, slightly lower values for noise if based on mean flow data
predicted by the TTJET code.
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PREDICTED CONVECTION MACH NUMBERS
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The TTJET code predictions for the convection Mach numbers of the supersonic
and Kelvin-Helmholtz (K-H) instability waves are shown in figure 20 for the jet total
temperatures of 755°K and 1370°K. The predicted values for M, and Mc' provide
essentially the same information as the experimentally determined values. The
TTJET code predicts supersonic phase speeds for the K-H wave to X/R, = 42.
This decreased distance, relative to the experimentally determined values in figure
17, is consistent with the more rapid mixing of the numerically simulated jet.
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Imstability Wave Model

e Compressible Rayleigh's Equation
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Figure 21

Linear instability wave theory for supersonic jets is now well-known. It can be
shown that development of an instability wave of fixed real frequency, w, is
governed by the compressible Rayleigh equation shown in figure 21 in the top
equation, where Q = w - aU. Here U and p are the mean velocity and density,
respectively, and M; is the fully expanded jet Mach number. The parameter, n, is
the azimuthal mode number and a is the axial wavenumber or eigenvalue of the
problem. The equation is written in a cylindrical polar coordinate system (r,¢,x)
with the jet axis aligned with the x-direction. Here, it is assumed that the flow is
locally paralle! and that fluctuating pressure can be written as in the second
expression, where A(x) is the amplitude function. The axial wavenumber, a, is
complex as shown, where a; controls the growth rate and a, determines the phase
speed as shown.
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Instability Wave Model - Numerical Scheme

e Set up the Inner & Outer Solutions

Integrate Numerically in the Shear Layer

- variable step-size Runge-Kutta algorithm

e Match Solutions at the Intermediate Point
f’Iﬁ; - f’llﬁo = A(w, a) =0

o Newton-Raphson lterative Scheme

Figure 22

The procedure used to solve the Rayleigh equation is shown in figure 22. The
usual procedure, as indicated, is to formulate the solution as an eigenvalue
problem. Here, a, is the unknown eigenvalue, which for a fixed real frequency w is
determined iteratively using a Newton-Raphson scheme. The inner and outer shear
layer pressure amplitude functions are determined by intregrating numerically
through the shear layer using a variable step-size Runge-Kutta algorithm from both
the outer and inner directions and matching an intermediate point.
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Instability Wave Model - Inner & Outer Solution
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Figure 23

Figure 23 shows the forms assumed for the instability wave's pressure. These
eigenfunctions are consistent with the cylindrical polar coordinate system used in
the Rayleigh equation. The upper equation is associated with the inner shear layer,
which satisfies boundary conditions associated with the boundedness condition at
r=0. The lower equation is associated with the outer boundary, which satisfies
boundary conditions associated with outgoing waves.
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Instability Wave Model - Far Field Directivity
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Figure 24

Following the procedure of Tam and Burton (1984) of matching the inner and outer
solutions, the acoustic pressure, p(r,8,x,t), in the region outside the jet flow is
given by the first equation in figure 24, where the second equation defines the
eigenvalue A,. The streamwise variation in amplitude and phase of the instability
wave, A(x), is given by the third equation. The wavenumber spectrum, g(k), is
obtained from the Fourier transform A(x) as indicated in the fourth equation. The
farfeild directivity function, D(x), defined as the sound power radiated in a direction
per unit solid angle by an instability wave of frequency w, is given in the bottom
equation.
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Modes of Instability
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Figure 25

Helical Mode, n = 2

Figure 25 provides several examples of the instantaneous instability wave pressure
in a cross plane associated with the first few fundamental modes n = O, 1, and 2.
These modes are generally considered the most dominant modes of instability, in
that they are generally the most highly amplified instability waves in a cylindrical

shear layer with a half-Gaussian mean velocity profile.
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Figure 26

In figure 26 example radial distributions are shown for the first few elementary
supersonic instability wave pressure fields. Even though calculations were
performed for jet total temperatures to 1370°K, only the (0,1) mode achieved
supersonic phase speed. Thus only this mode would radiate sound to the far field.
Higher jet temperatures, however, would be expected to produce higher order
supersonic instability waves with supersonic phase speed.
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Figure 27

Instability wave theory suggests that noise characteristics of hot supersonic jets in
the peak radiation direction are related to those of the most highly amplified
instability wave. The total amplification of an instability wave of frequency, w,
and mode number, n, is related to the growth rate of the wave, which is
functionally related to the sign and magnitude of a;, the imaginary part of the axial
wavenumber a. The total growth integral, evaluated to a wave’s neutral point X,
(i.e. @, = 0), is used as a gauge for the relative importance of a given mode at a
specnfled frequency to produce noise. The total growth integral is plotted as a
function of Strouhal number in figure 27 for several K-H modes and the one
supersonic instability wave with supersonic phase speed. From figure 27 it can be
noted that the axisymmetric K-H wave is relatively unimportant over the entire
Strouhal range shown. The same applies to the supersonic instability wave, where
supersonic phase speeds were obtained only for Strouhal numbers above 0.3.

Both the first and second order helical modes achieve the highest growth rates. in
the Strouhal number range for maximum noise emission, 0.05< S, < 0.1, the first
order helical dominates. In the Strouhal number range above 0.1, both first and
second order helical modes are equally important. This suggests that one should,
in the future, consider even higher order modes for hot jets.
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Figure 28

In a similar fashion, the total growth integral results for the jet total temperature of
1370°%K is shown in figure 28. Immediately apparent is the increased significance
of the supersonic instability wave, which is now competitive with the K-H waves
in the Strouhal number range above 0.2. Again the first order helical mode
dominates the Strouhal number range associated with peak noise emission,
although all amplitudes for K-H waves have diminished from those computed for
the previous 755°K jet temperature. The axisymmetric mode only achieves
importance in the higher Strouhal number range above 0.3. The fact that all
modes calculated have nearly identical importance at higher Strouhal number
represents a major difficulty in application of the Rayleigh model. The utility of the
Rayleigh model diminishes when many modes become significant, since the
present theory cannot assign initial amplitudes to any of the modes. In the present
calculations, it is assumed that all modes have equal initial amplitudes. This is a
restrictive assumption, since in reality one expects the initial shear layer receptivity
to disturbances to be dependent on wave frequency and mode number.
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Figure 29

The angular dependence of the Strouhal frequency is important in verification of
the application of spatial stability theory to solve the compressible Rayleigh
equation for prediction of noise emission. Figure 29 shows this dependence for
the major Strouhal frequencies of interest at 1370°K. The data is normalized by
the spectral amplitude corresponding to the maximum value, P,, among all four
Strouhal frequency components. This normalization procedure is chosen since
instability wave theory cannot predict absolute values for noise radiation. As can
be observed, the S, = 0.05 and 0.01 components are dominant frequencies, but
peak at different angles to the inlet axis. The 0.4 component is least significant
and has a peak amplitude 10 dB less than the 0.1 component. Recalling figure 7,
the Mach wave emission process peak is only 15 dB above what may be
considered noise generated by small scale turbulence. Thus the 0.4 component
directional amplitude characteristics shown in figure 29 may be influenced by noise
generated by small scale turbulence.
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Figure 30

Figure 30 shows a comparison between the measured directivity of the 0.1
Strouhal frequency component and the Rayleigh prediction of noise for the three K-
H waves n = 0, 1,2. The jet total temperature is 1370°K, but for this Strouhal
frequency there is no solution for a supersonic instability wave. The predicted far
field pressure for each of the instability modes is normalized using the same
procedure provided in figure 29. All K-H waves are initialized with equal
amplitudes at the nozzle exit. From this comparison, it is apparent that the first
order helical mode is the most dominant component. Both the axisymmetric mode,
n=0, and the second order helical mode, n=2, contribute equal amounts to the
sound field. Note that the data shows inflections near those angular positions
where each respective mode achieves their peak amplitude. The angular shift
between data and computation is related to the finite distance the data was
collected from the nozzle (R = 12 ft.). Adjustment for true source location in the
jet would shift all measured data several degrees toward the numerically predicted
data.
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Figure 31

Figure 31 shows a similar comparison between predicted and measured acoustic
data for the 0.4 Strouhal frequency component. Here we see that both the
axisymmetric and first helical K-H wave is equally important. One also sees that
the (0,1) mode supersonic instability wave has a direct influence on the predicted
noise radiation at narrow angles to the jet axis. The measured data also shows
signs of its existence. In general we see that the comparison to data is not as
good as that obtained at lower Strouhal number. This may be due to the influence

of noise generated by fine scale turbulence.
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Figure 32

A study was recently conducted to determine the noise reduction potential
associated with simple single nozzle ducts of various geometries. Figure 32 shows
a comparison of noise emitted by a round convergent nozzle, a round convergent-
divergent nozzle with exit design Mach number of 1.5, an elliptic convergent-
divergent nozzle with an aspect ratio of 2 and design Mach number of 1.5, and an
Aden nozzle (i.e. rectangular geometry) with an aspect ratio of 2 and design Mach
number of 1.5. The data is presented in terms of perceived noise level in dB as a
function of angle to the nozzle inlet axis. The jet temperature for all nozzles was
1160°R and the data has been normalized to 50,000 pounds of thrust at the FAR
36 sideline distance of 1476 feet. As is evident both the elliptic and Aden nozzles
produce significant noise reduction in the peak noise direction, ¢ = 120°.
However, unlike the Aden nozzle, the elliptic nozzle has very low levels of shock
noise, so that significant reductions are obtained at all angles to the jet axis. The
single elliptic nozzle produces a noise reduction between 7 and 8 PNdB relative to
the baseline convergent nozzle.
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Figure 33

Figure 33 shows a comparison between noise emitted by 4 interacting in line
nozzles and 4 non-interacting equivalent baseline round convergent nozzles. The
4 interacting nozzles are separated by 2.5 jet exit diameters. The noise produced
by the 4 non-interacting jets is computed from ANOPP with each synthetic nozzle
located at the equivalent location of the 4 interacting nozzle locations. The
contour map of figure 33 shows the result of substracting the non-interacting jets
from the measured noise of the interacting jets. At @ = 0° the azimuthal view is
sideline along the axis joining all nozzles. At @ = 90° the azimuthal view is
normal to the plane containing the four nozzles. It can be observed that significant
noise reductions occur in the sideline direction. At ® = 0° and W = 150°, the 6
dB relative noise reduction indicates complete shielding of noise by the near jet of
all other noise generated by the remaining nozzies. At ® = 90° and W = 90°, the
-1.5 dB relative noise reduction indicated that aerodynamic interaction of the jet
plumes may have led to faster decay of jet centerline velocity and thus lower
noise. Only a small region exhibits a slight noise increase at ® = 90°and ¥ =

130°.
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